Tractography-Based Parcellation of the Cortex Using a Spatially-Informed Dimension Reduction of the Connectivity Matrix
نویسندگان
چکیده
Determining cortical functional areas is an important goal for neurosciences and clinical neurosurgery. This paper presents a method for connectivity-based parcellation of the entire human cortical surface, exploiting the idea that each cortex region has a specific connection profile. The connectivity matrix of the cortex is computed using analytical Q-ball-based tractography. The parcellation is achieved independently for each subject and applied to the subset of the cortical surface endowed with enough connections to estimate safely a connectivity profile, namely the top of the cortical gyri. The key point of the method lies in a twofold reduction of the connectivity matrix dimension. First, parcellation amounts to iterating the clustering of Voronoï patches of the cortical surface into parcels endowed with homogeneous profiles. The parcels without intersection with the patch boundaries are selected for the final parcellation. Before clustering a patch, the complete profiles are collapsed into short profiles indicating connectivity with a set of putative cortical areas. These areas are supposed to correspond to the catchment basins of the watershed of the density of connection to the patch computed on the cortical surface. The results obtained for several brains are compared visually using a coordinate system.
منابع مشابه
Connectivity-based structural and functional parcellation of the human cortex using diffusion imaging and tractography
The parcellation of the cortex via its anatomical properties has been an important research endeavor for over a century. To date, however, a universally accepted parcellation scheme for the human brain still remains elusive. In the current review, we explore the use of in vivo diffusion imaging and white matter tractography as a non-invasive method for the structural and functional parcellation...
متن کاملClustering probabilistic tractograms using independent component analysis applied to the thalamus
The connectivity information contained in diffusion tensor imaging (DTI) has previously been used to parcellate cortical and subcortical regions based on their connectivity profiles. The aim of the current study is to investigate the utility of a novel approach to connectivity based parcellation of the thalamus using probabilistic tractography and independent component analysis (ICA). We use IC...
متن کاملHierarchical Information-Based Clustering for Connectivity-Based Cortex Parcellation
One of the most promising avenues for compiling connectivity data originates from the notion that individual brain regions maintain individual connectivity profiles; the functional repertoire of a cortical area ("the functional fingerprint") is closely related to its anatomical connections ("the connectional fingerprint") and, hence, a segregated cortical area may be characterized by a highly c...
متن کاملTractography-Driven Groupwise Multi-scale Parcellation of the Cortex
The analysis of the connectome of the human brain provides key insight into the brain's organisation and function, and its evolution in disease or ageing. Parcellation of the cortical surface into distinct regions in terms of structural connectivity is an essential step that can enable such analysis. The estimation of a stable connectome across a population of healthy subjects requires the esti...
متن کاملThe Role of Long-Range Connectivity for the Characterization of the Functional–Anatomical Organization of the Cortex
This review focuses on the role of long-range connectivity as one element of brain structure that is of key importance for the functional-anatomical organization of the cortex. In this context, we discuss the putative guiding principles for mapping brain function and structure onto the cortical surface. Such mappings reveal a high degree of functional-anatomical segregation. Given that brain re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 12 Pt 1 شماره
صفحات -
تاریخ انتشار 2009